

Graphical Interface Generator
 User's Guide

Glass Tool

Marcelo de Paiva Guimarães paiva@lsi.usp.br
Bruno Barberi Gnecco brunobg@lsi.usp.br

17th July 2004

 4

GEditor © 2003, 2004 Marcelo de Paiva Guimarães and Bruno Barberi Gnecco
<paiva, brunobg@lsi.usp.br>

 5

Contents

1. Introduction.. 6

1.1 License ... 7

1.2 Requirements.. 7

1.3 Tools... 7

1.3 Portability... 7

1.4 Where to get ... 8

1.5 Install.. 8

1.6 Examples .. 8

1.7 Acknowledgements .. 9

2. Graphical Interface Generator.. 10

2.1 GEditor... 10

2.1 GPda... 12

3. Step-by-step ... 14

3.1 GEditor Interface.. 14

3.2 GEditor project... 18

3.3 Receiving the events in the cluster... 31

3.4 GPda... 32

Chapter 1 - Introduction

 6

Chapter 1

1. INTRODUCTION

Input devices are used in Virtual Reality (VR) to let the user interact with the

virtual world, providing the feeling of immersion in the environment. Traditionally,

VR applications have used specialized devices (gloves, 3-D joysticks and HMD) that

are often produced for a relatively small niche market, are extremely expensive,

subject to several limitations, such as freedom of movement, and are not easily

mastered by inexperienced users.

The integration with PDA (Personal Digital Assistant) devices brings several

advantages to VR. Most common PDAs are portable, lightweight and enhanced with

fast processors, RAM and ROM capabilities, supporting complex tasks such as the

visualization of multimedia data (images, texts, voice, sounds, video/audio

streaming), etc. Moreover, they are compatible with wireless standard IEEE 802.11

and with other interfaces, like GPRS, Bluetooth, Serial and Infra-red.Thanks to these

features, PDAs are being used in VR applications, not only to provide a friendly,

active participation to the virtual experience, but also to visualize and insert

multimedia data and comments both during the virtual experience and after it.

The GEditor simplify the design of graphical interfaces and their interaction

with the VR application, freeing the designer from having to know all the details of

the individual technologies, and to use PDAs as interaction device. The interfaces

generated are simple and intuitive, and can be used even by untrained users to

interact with a distributed virtual environment. This solution requires no

programming knowledge from the GUI designer. The PDA application

communicates transparently with a cluster, via any underlying network system,

which processes the events and maintains the synchrony of the rendered images in

real-time. Moreover, the interface and its configuration can be changed at run-time.

This solution is part of Glass, a library for the development of distributed

applications. It offers key features for distributed VR applications, such as data lock

and frame lock synchronization (see Glass manual to details about it).

Chapter 1 - Introduction

 7

1.1 License

GEditor is released under the LGPL License (see

http://www.gnu.org/licenses/lgpl.html for details).

1.2 Requirements

• GEditor should work with any Java compiler.

• It´s provided with Glass.

• Linux and Java Virtual Machine are required for the PDA applications test.

• Compile the Glass for the PDA (using the appropriated compiler)

1.3 Tools

• geditor allows the development of the interface which will run on the PDA.

• gpda executes the application, developed on the geditor, on the PDA.

1.3 Portability

GEditor was developed in a Linux/x86 platform, which is what most of the

clusters run, anyway. It should run in any Unix that full the requirements

• GEditor was tested on the following architecture:

- Linux 2.4/x86

- Windows

• GPpda was tested on the following architecture with the iPAQ H3970:

- Linux 2.4 (see www.handhelds.org to details)

- Windows

 GPda should run in any architecture supported by the Glass library and by

Java.

Chapter 1 - Introduction

 8

1.4 Where to get

GEditor/GPda official homepage is:

• http://libglass.sourceforge.net/

• http://www.lsi.usp.br/~paiva/glass/

• http://www.lsi.usp.br/~brunobg/glass/

You can contact the authors:

Marcelo de Paiva Guimarães paiva@lsi.usp.br

Bruno Barberi Gnecco brunog@lsi.usp.br

1.5 Install

First install the Glass library (see it´s manual to details).

In the glass glass/utils/geditor/src/ subdirectory execute

Make

You'll find in glass/utils/geditor/bin/ directory the geditor.jar

and gpda.jar.

To run the geditor execute

java –jar geditor.jar

To run the gpda execute

java –jar gpda.jar Projectname.glass host

1.6 Examples

In the glass/utils/geditor/projects/ subdirectory you will find

some examples. They are a good source for learning the geditor, and some of them

are used in this guide to illustrate examples.

You'll find in that directory a README with descriptions of each program.

Chapter 1 - Introduction

 9

1.7 Acknowledgements

Thanks to Hilton Fernandes for provide the PDA´s for the tests and the valuable

technical support.

Chapter 2 – Graphical Interface Generator

 10

Chapter 2

2. GRAPHICAL INTERFACE GENERATOR

2.1 GEditor

The graphical interface generator tool consists of a Java application. Java was

chosen due to its platform independence. The tool proposes a simple approach to

GUIs. Instead of the usual set of widgets present in most GUI APIs, an image is

used. The designer then defines hot spot areas on this image, which can be associated

to events of the application. A complex GUI, with alphanumeric fields, menus, etc.,

reduces the feeling of immersion, since the user has to concentrate on the device

instead of on the application.

A screenshot of the tool is shown on Figure 1. One can see on the center the GUI

image, which will be shown on the PDA, and the colored hot spots over it. On the

right there is a list of the hot spots and the events that are associated with them. The

designer uses the buttons on the toolbar to select, add and erase the hot spots. The hot

spots can be either a rectangle or an ellipse, and hot spots associated with the same

events can overlap. The menus supply resources to create, close, and save the project,

and to resize the image area. Image size area present on the Figure 1 is configured to

an iPAQ H3970 (240 x 320).

Chapter 2 – Graphical Interface Generator

 11

Figure 1 – GUI design tool, showing the Celestia interface.

Each hot spot is associated to an event, which has a number (automatically

generated), name, color and type. One event can have more than one hot spot

mapped. There are three types of events:

• Simple event: when triggered, the associated event number is sent to the

interested nodes, which will process it.

• Exit event: when triggered, the application running on PDA exits, notifying

the other nodes.

• Skin event: when triggered, the PDA skin (background image) is changed. An

application may have a set of skins, and each skin may have a different set of

hot spots. These events are attended locally, but a notification may be

propagated to other nodes.

• Position event: when triggered, the position of the PDA interface clicked (x,y)

is sent to the interested nodes, which will process it.

The decision of treating events remotely simplifies the development of the GUI.

It’s also easier to change the GUI, since it requires no change or recompilation of the

application. The GUI designers don’t need any programming knowledge.

Chapter 2 – Graphical Interface Generator

 12

2.1 GPda

The graphical interface generator tool creates a data file to be used with the GUI

Java application. A skeleton of the event handler on the main application is also

generated automatically (in C). This routine will receive the events from the PDA on

the main application and process them.

Figure 2 presents a skeleton example. This code can be used as initial base to

implement the event handler. When the user clicks on the hot spot “Mercury”, for

example, this routine will receive the associated value and the switch will handle it.

Figure 2 – Skeleton code of the event handler.

Figure 3 shows the application environment. On the middle is a multiprojection

device (CAVE) that is being controlled by the computers. The PDA is considered

just another node of the cluster, so it offers bidirectional communication. The PDA

application can be the same one that runs on the PDA. Since events are

asynchronous, the other cluster nodes do not depend on PDA performance to do the

data and frame synchronization. The PDA node can be initialized or shut down at

any moment, and the application will keep running. This is useful to have several

PDAs running simultaneously — for instance, each PDA may be controlling a

different vehicle of a simulator.

enum Event = {Mercury=1,
 Venus=2
};

switch (event) {
 case Mercury:
 // to be filled by the developer
 break;
 case Venus:
 // to be filled by the developer
 break;
}

Chapter 2 – Graphical Interface Generator

 13

Figure 3 – The PDA is a cluster node.

The PDA application uses the Swing Java component. The use of Java allows

the application to be executed on many different operational systems (Windows,

Linux, Windows CE, IRIX) and platforms.

Figure 4 shows the layers of the generated code. One could integrate this code in

more complex applications, using either Java or C/C++. JNI (Java Native Interface)

is used in our PDA application to interface with Glass. On top of the operational

system is the Java Virtual Machine. The highest layer is our Java Application.

Figure 4 – PDA software layers

Application

Java

Java Virtual Machine JNI

Glass
Operational System

(Linux, Windows CE, Windows)

Step-by-step

 14

Chapter 3

3. STEP-BY-STEP

This step-by-step chapter provides instructions of how to use the GEditor. It

guides you through the process of create a new interface for PDAs and the run

process on the PDA.

3.1 GEditor Interface

Figure 5 - GEditor interface

1- Event Relationship tree. It shows each event with the hot spot associated

(mapped). An event can be associated with many hot spots. It presents the

events of the current skin tab.

2 - Event name. If clicked, the hot spots associated are selected.

3 – Hot spot. There are two types of hot spots: Rectangles and Ellipses. If

clicked, the correspondent hot spot is select on the drawing area.

4- Drawing area (skin). This is the interface that will be presented on the PDA.

A project can have many skins which each one appears on a tab.

5- Press this to exit the geditor.

6

7

8

9

10

11

12 13

5

1

2
3

4

Step-by-step

 15

6 – Select button allows you to select a hot spot in your skin. You select a hot

spot by clicking on the hot spot.

 7 – Rectangle hot spot allows you to add a new hot spot. The event associated

with the new hot spot is the last one created or selected. To use this tool you

must first select it. Click and drag your mouse to draw the rectangle hot spot.

See a rectangle hot spot example on (12).

8 - Ellipse hot spot allows you to add a new hot spot. The event associated with

the new hot spot is the last one created or selected. To use this tool you must

first select it. Click and drag to draw an ellipse. See an ellipse hot spot the

example on (13).

9 – Image loader. Load an image from the hard disk and add it on the current

skin.

10 – Code generator. Generate the C code skeleton used for the development of

the treatment routine on the cluster.

11 – Hide/Show image. It allows you see the hot spot with/without the skin

image on the background. Press the button to hide the skin image and press

again to show the skin image.

Step-by-step

 16

Figure 6 – Geditor interface

1 – File menu.

• New- create a new project.

• Open – open a existing project

• Save – save the project

• Close – close the project

2 – Configure menu. It allows you to set the skin image area. Each PDA has the

own image area (height and weight).

3 – Glass menu. It shows the about dialog.

4 – Tab. A project can have many skins. Each skins is presented on a tab. To

change to another skin, press the tab.

5 – Example of Skin image loaded.

6 – Menu allows you manipulate the events, hot spots or the skins. If a hot spot

is not select, the hot spot options are not enabled.

7 – Events allows you to add a new event or change its name and/or color.

8 – Hot Spot Association allows you to associate the current hot spot selected

with an event. This option is enabled on the Menu if a hot spot is selected.

1 2 3

4

5

6
8

910
11

12
13

14
15

7

Step-by-step

 17

9 – Hot Spot Type allows you to change the hot spot type (simple, exit, skin and

position). The default type is simple. This option is enabled on the Menu if

a hot spot is selected.

10 – Add on All Skins. Add the current hot spot on all skins. This option is

enabled on the Menu if a hot spot is selected.

11 – Delete this Hot Spot allows you to delete the current hot spot selected

from this skin. This option is enabled on the Menu if a hot spot is selected.

12 – Delete of All Skins allows you to delete the current hot spot selected from

all skins. This option is enabled on the Menu if a hot spot is selected.

13 – New Skin allows you to add a new skin on this project

14 – Delete this Skin allows you to delete this skin of the project.

15 – Change the Skin name allows you to change name of the current skin.

Step-by-step

 18

3.2 GEditor project

. • To start the GEditor

You'll find in glass/utils/geditor/bin/ directory the geditor.jar

java –jar geditor.jar

The initial interface is presented (Figure 7).

Figure 7 – Initial interface

• New Project

 Choose the New option on the File menu to start a new project. Figure 8

shows the menu.

Figure 8 – New project

Step-by-step

 19

• Project name

 Type the project name in the dialog box (Figure 9).

Figure 9 – Project name

• Adding a image on the current skin

 Press Image loader button to load the image for this skin (Figure 10).

Figure 10 – Loading an image

Step-by-step

 20

• Choosing the image

 You must use the Chosen box presented on Figure 11 to select an image.

Figure 11 – Choosing an image

• New skin image

Figure 12 presents the image added on the current skin.

Figure 12 – Skin image

Step-by-step

 21

• Skin name

 Press the right button mouse on the image area to initialize the menu

presented in Figure 13. Choose the option Change the Skin name

Figure 13 – Skin name

• New skin name

 Type the new skin name in the dialog box presented on Figure 14.

Figure 14 – Skin name

Step-by-step

 22

• Adding a hot spot

 Select the Rectangle Hot Spot button. Click and drag your mouse to draw

the rectangle hot spot over the Mercury planet (Figure 15).

Figure 15 – Adding a hot spot

• Rectangle hot spot

 Figure 16 show the hot spot created over Mercury planet. When a project is

started a event is created by default (named Button 1). This new hot spot was

associated with this event.

Figure 16 – Hot spot over Mercury planet

Step-by-step

 23

• Changing attribute of a event

 This first event was created by default. To change its values click right

mouse button to appear the Menu presented on Figure 17 . Choose the option

Events.

Figure 17 – Event values

• Changing hot spot values

 Type the new name for this event (Mercury). If the color is similar to the

image in skin, you can change it pressing the button Color (Figure 18).

Figure 18 – Changing event values

Step-by-step

 24

• Creating another event

 Press the right button mouse on the image area and choose the Events

option. Press New button to create a new event (Figure 19).

Figure 19 – Creating an event

• The new event

 Type the event Name (Venus). The event color is generated automatically; it

is up to you to change it. Press Color button to choose another color to this event.

(Figure 20)

Figure 20 – New event

Step-by-step

 25

• Ellipse hot spot

 The current event is the Event Venus (number 2). Press Ellipse Hot Spot

button and draw a hot spot over the Venus planet (Figure 21).

Figure 21 – Ellipse hot spot

• Ellipse hot spot

 Figure 22 shows the hot spot created over the Venus planet.

Figure 22 – Vênus hot spot

Step-by-step

 26

• Adding a skin

 Click right button mouse and select New Skin option (Figure 23).

Figure 23 – Adding a skin

• Loading a image for the new skin

 Select the new Tab and press the Image loader button to load the image.

You must use the Chosen dialog to select an image (Figure 24).

Figure 24 –Loading a image

Step-by-step

 27

• Skin name

Press the right button mouse on the image area to initialize the menu and select

the option Change the Skin name. Type the skin name (Figure 25).

Figure 25 – Skin name

• Skin

Figure 26 shows the project with two skins.

Figure 26 – Two skins

Step-by-step

 28

• Hot spot association

You must use the Events option on the menu to add new events. There is not

limit on the quantity of events. All hot spot must be associated with a event. You

must use the Host Spot Association Event option on the menu to change hot spot

association (Figure 27). This option is enabled just if a hot spot is select.

Figure 27 – Hot Spot Association.

• Hot spot association

When the Hot Spot Association Event option is select the following dialog is

presented (Figure 28). You must use the event list to choose an event to associate

with the current hot spot.

Figure 28 – Choose an event.

Step-by-step

 29

• Hot spot type

On the button corner of this skin there is exit hot spot. The difference between

this hot spot and other created before is the type. You must select the hot spot, click

the right mouse button, choose the option Hot Spot Type and select the Hot Spot

Type. This example shows an Exit button, so you must select the exit option (Figure

29)

Figure 29 – Hot Spot Type

Step-by-step

 30

• Code generation process

Press Code generator button to create the C code skeleton (Figure 30).

Figure 30 – Code Genaration

• Code generation dialog

Figure 31 shows the dialog box asking for the file name.

Figure 31 – Code Generation

Step-by-step

 31

• Save the project

Click File-> Save to save the project. Figure 32 shows the dialog box asking for

the project destination.

Figure 32 – Saving the project

3.3 Receiving the events in the cluster

The cluster application will receives the events form the PDA and process them.

You must use the variable gpdaint to receive Simple and Exit events, and you must

use the variable gpdastr to receive Position event. The event returned in gpdastr

variable is a string which the first part is x position and the second part is y position.

The position are separated by “;”. For example: “3;6”

Figure 33 presents a receiving routine implemented. When gpdaint is not empty

the Routine1 is called. When gpdastr is not empty the Routine2 is called. These

routes must interpret the arguments and execute the appropriated commands.

Step-by-step

 32

Figure 33 – Routine implemented

3.4 GPda

 This application is used to run the interface in the PDA.

• Configure the PDA. The following softwares must be configured on the PDA.

- Java. See java manual for details.

- Glass library. You'll find in glass/utils/geditor/bin/ directory

the file libglasspda.so. It must be created using the specific

compiler for the PDA.

• Files in the PDA

-libglasspda.so

- You'll find in glass/utils/geditor/bin/ directory the file

gpda.jar. Copy it to the PDA.

- Project (XXXX.glass)

- Images. You must copy the images used to create the project to the pda. The

project (XXXX.glass) and the images must be on the same directory.

• run the application

java –jar gpda.jar XXXX.glass hostname

void Display(void){

 // if is a Simple or Exit event
 if(!gpdaint->isEmpty()){
 Routine1(gpdaint->getEvent());
 }

 // if is a Position event
 if(!gpdastr->isEmpty()) {
 Routine2(gpdastr->getEvent());
 }
 . . .
 glLoadIdentity();
 . . .
 render();
}

